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INTRODUCTION These methods, in combination with the tools provided by

It is becoming increasingly apparent that the study of any
biological process must take advantage of all available scien-
tific methods. Not only is it important to examine the individ-
ual components in vitro by structural and biochemical means,
but also it is critical that the entire process be studied in vivo
through the use of genetic and cell biological approaches.
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molecular biology, complement one another and allow com-
plex questions to be probed at all levels.

Our understanding of the bidirectional movement of mac-
romolecules across the nuclear envelope has benefited from
such a multifaceted approach. Nuclear trafficking is an exceed-
ingly complex process consisting of numerous macromolecular
highways with proteins and RNAs traveling back and forth
through nuclear pores that serve as tunnels through the nu-
clear envelope. Although proteins are produced in the cyto-
plasm, those that participate in nuclear functions must be
translocated into the nucleus, a process known as nuclear pro-
tein import. Some of these proteins are subsequently trans-
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ported back into the cytoplasm via a specific process termed
nuclear protein export. In addition to proteins, a variety of
RNA species move back and forth across the nuclear envelope.
All of these processes considered in concert comprise the gen-
eral phenomenon described as nuclear transport.

Classical studies of nuclear protein import have generally
examined the import of proteins that contain canonical nuclear
localization signals (NLSs). Many RNA export studies have
focused on the movement of poly(A)* RNA. Recent advances
have shown that these views of protein import and RNA export
are simplistic. Evidence suggesting that there are distinct
mechanisms for the transport of different classes of proteins (5,
205) and RNAs (91, 227) into and out of the nucleus is emerg-
ing. Thus, the transport processes that have been studied most
extensively may represent only the tip of the mechanistic ice-
berg.

The physical separation of nuclear and cytoplasmic func-
tions bestows upon the eukaryotic cell a mechanism for regu-
lation of cellular processes that is not available to prokaryotes.
Compartmentalization is a regulatory mechanism where, for
example, an activator may be sequestered from its activation
target. There are many examples of transcription factors that
are sequestered in the cytoplasm and are transported to the
nucleus only in response to a cellular signal (17, 33, 174, 213,
242). In light of these considerations, it is clear that the mac-
romolecular traffic crossing the nuclear envelope must be me-
ticulously regulated both to maintain the normal state of the
cell and to respond to intracellular signals that mediate cell
growth and other essential processes.

The basic components of the nuclear transport system have
been exceedingly well conserved throughout evolution. It has
been known for some time that the general architecture of the
transport channel, the nuclear pore, has been conserved
among diverse species (166). This conservation has now ex-
panded to the molecular level and includes many of the soluble
transport factors and at least one component of the nuclear
pore (4, 7, 51, 170). This evolutionary conservation of compo-
nents comprising the nuclear transport machinery broadens
the arena in which studies of this process can occur. Conse-
quently, studies carried out in a number of different experi-
mental systems have contributed to our current understanding
of macromolecular transport. There are, however, several ex-
perimental systems that have contributed the most to our
knowledge. In vitro transport assays with either Xenopus egg
extracts or permeabilized mammalian cells have provided a
great deal of information. These studies have been comple-
mented by in vivo studies carried out in genetic systems such as
the budding yeast, Saccharomyces cerevisiae, and the fission
yeast, Schizosaccharomyces pombe. A number of recent reviews
have neglected many of the contributions that have been made
as a result of studies in these genetically amenable organisms.
For this reason, the present review will attempt to present our
current understanding of nuclear transport in an integrated
manner while highlighting the contributions that have been
made through studies in yeast.

NUCLEAR PORES: THE SITE OF TRANSLOCATION

Macromolecular communication between the nucleus and
the cytoplasm is mediated by nuclear pores that serve as the
physical connection between these two cellular compartments.
Movement of all proteins and RNAs across the nuclear enve-
lope occurs through these nuclear pores that form channels in
the double membrane. Several excellent reviews have recently
addressed the structure and function of the nuclear pore com-
plex (59, 196, 223). The nuclear pore complex has been studied
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primarily by two different approaches. Microscopy has been
used to examine the overall architecture of the pore complex
(196), while the individual protein components, termed
nucleoporins, have been defined through a combination of
biochemical and genetic approaches (66, 222). These studies
have demonstrated that the nuclear pore complex is extremely
large and is currently estimated to contain between 40 and 100
distinct proteins (14, 222). Yeast nuclear pores are estimated
to be approximately 66 MDa (204), whereas mammalian nu-
clear pores are on the order of 125 MDa (196, 198). Recent
developments in biochemical (222) and genetic (66) method-
ologies, as well as the recent completion of the sequencing of
the entire S. cerevisiae genome (70), are indications that the
identification of the individual components of the pore will be
completed in the foreseeable future. The challenge that re-
mains is to meld these two approaches and determine the
arrangement of each individual component in this large com-
plex, an endeavor that is presently being undertaken through
the use of immunoelectron microscopy (196).

Nuclear Pore Architecture

Briefly, the nuclear pore complex resembles a rivet embed-
ded in the nuclear membrane (88, 196, 198). Studies of am-
phibian nuclear envelopes have revealed that the complex is
asymmetric with respect to the nuclear envelope. Both the
cytoplasmic and nuclear faces have rings with eightfold rota-
tional symmetry that are connected by central spokes that may
traverse the nuclear envelope (197). In vertebrate cells, the
cytoplasmic face has filaments of approximately 50 to 100 nm
that emanate away from the face of the nucleus whereas the
nucleoplasmic face contains a basket-like structure that
projects into the nucleus (88). In addition, the center of the
pore complex contains a “transporter” or “central plug,” which
has been the point of some controversy. It is not yet clear
whether this electron-dense material represents a structural
element of the nuclear pore complex or perhaps merely a
macromolecule in transit. At least one nucleoporin has been
mapped to this domain of the nuclear pore (101, 196, 199),
suggesting that it is truly a structural element of the pore
complex.

Components of the Nuclear Pore Complex

Individual components of the nuclear pore complex have
been identified by both biochemical and genetic approaches.
Although a number of different systems have been used to
isolate nucleoporins, by far the most success has been achieved
with the budding yeast, S. cerevisiae. The first yeast nucleopor-
ins were identified by purification of yeast nuclear envelopes
(122), isolation of proteins by immunological methods, and
reverse genetics to identify the corresponding genes (60, 121).
Genetic screens that were originally based on the first two
genes identified in this manner, NSP! (121) and NUPI (60),
have been invaluable in the identification of new nucleoporins.
In particular, synthetic lethal screens that identify genetic in-
teractions between genes encoding nucleoporins have led to
the identification of more than half of the known genes (66).
These screens take advantage of situations in which a condi-
tional mutant is viable on its own but is lethal in combination
with a second mutation, presumably in a functionally related
gene (20). Another method that has been quite useful in the
identification of novel nucleoporins has been to screen for
conditional yeast mutants with defects in macromolecular
transport (9, 89, 96, 110, 151). These genetic approaches have
been complemented by the original biochemical approach, pu-
rifying nuclear envelope fractions enriched in pore complexes
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TABLE 1. Nucleoporins identified in S. cerevisiae

Nucleoporin Class Interactions” Phenotype Reference(s)
NUP49 GLFG NSPI, Nsplp, Nup57p, Nic96p Essential; protein import and 98, 269, 273
RNA export defects
NUP57 GLFG NSPI, Nsplp, Nup49p, Nic96p Essential 99
NUPS2 NSPI, NUP120, NUP85 Essential; RNA export defects 98, 123
NUP84 NSPI1, Nup85p, Nup120p, Not essential; RNA export defects 245
Sec13p, Sehlp
NUPS5 NSP1, Nup84p, Secl3p, Not essential; RNA export defects 89, 245
Seh13p, Nup120p
NIC96 (90 kDa) NSPI1, POM152, Nsplp, Essential 97, 98
Nup49p, Nup57p
NUP2 (95 kDa) FXFG NSP1, NUP2 Not essential 153
NUPI100 GLFG NUPI16, NUPI145 Not essential 269
NSPI (~100 kDa) GLFG/FXFG NUPI, NUP2, NUP49, NUP57, Essential; protein import defects, 97, 121, 186, 273
NUPS82, NUP84, NUPS5, tRNA export defects
NICY96, NUP116, NUP133,
NUPI145, Nup49p, Nup57p,
Nic96p
NUPII16 GLFG NSPI, NUP100, NUP145 Not essential 238, 269, 273
NUPI20 NUPI133, NUP159 Not essential; RNA export defects 6, 110
NUPI (130 kDa) FXFG/GLFG NSPI1, NUP2, NUPI133 Essential; RNA export defects 26, 60, 232, 269
NUPI33 NUPI, NUPI120 Not essential; RNA export defects 67, 151, 238
NUPI45 GLFG NSPI, NUP100, NUP116 Essential; RNA export defects 72, 267
POM152 NICY96, NUP170, NUP188 Not essential 7,222
NUPI157 NUPI170, NUP188 Not essential 7
NUPI159 XXFG/FXFG Essential; RNA export defects 96, 144
NUPI170 POM152, NUP157, NUP188 Not essential 7, 136
NUP188 POM152, NUP170 Not essential 7, 188

¢ Interactions are either genetic or biochemical. Genetic interactions are indicated by listing the gene encoding the protein. Biochemical interactions are indicated

by listing the relevant proteins.

and using microsequencing to identify proteins corresponding
to bands on a protein gel, a technique that has proved useful
for mammalian systems (210, 211) as well as yeast (7, 136, 222).
Finally, with the release of the complete sequence of the S.
cerevisiae genome, it has been possible to identify gene classes
simply on the basis of sequence homology (7, 70). The combi-
nation of these methods has made yeast the premier organism
for the molecular analysis of the individual components of the
nuclear pore. The sequence of the entire genome also facili-
tates the characterization of components at the molecular
level. Since genes encoding all nucleoporins have been se-
quenced (as have all S. cerevisiae genes), albeit not identified,
the nuclear pore components are all defined by specific genetic
loci rather than by function or protein molecular weight. This
is in contrast to some nucleoporins described in higher eu-
karyotes, where the protein of interest corresponds to a band
with unknown molecular identity on a gel.

Table 1 lists the nucleoporins that have been identified in S.
cerevisiae. Conventionally, each component of the nuclear pore
is named by the three-letter code NUP followed by the molec-
ular mass of the protein. For historical reasons, there are
several nucleoporins that do not conform to this convention,
including NUP!I (60), NUP2 (153), NIC96 (97), and NSPI
(121). The molecular masses of these proteins are listed in
Table 1. Pore components that are thought to be membrane-
spanning proteins based on sequence analysis are referred to
as POMs, for pore membrane proteins (276).

Identification of approximately 20 genes encoding nucleo-
porins in yeast and a handful of others in higher eukaryotes has
led to the classification of these proteins into several different
groups based on sequence motifs contained within their pri-
mary amino acid sequences. Two classes of phenylalanine/
glycine (FG) repeats, GLFG and FXFG subtypes, have been
identified. A number of nucleoporins contain one or the other

or a combination of these repeats (Table 1). Since the sequenc-
ing of the yeast genome is complete, it is clear that there are no
other nucleoporins that fall into the FG repeat family. It is
possible, even likely, that there is an as yet unidentified class of
nucleoporins containing a different motif or that the remaining
nucleoporins are distinct from known nucleoporins and from
one another.

Thus far, the in vivo function of the FG repeat regions has
not been elucidated. It has, however, been shown that some
soluble nuclear transport factors interact with these FG repeat
domains in vitro (127, 188, 216). Thus, the FG repeat domains
may play a role in targeting the soluble transport factors to the
nuclear pore. It has been demonstrated for several nucleopor-
ins that the repeat regions are not the essential regions of the
proteins (73, 187). This suggests that the repeats of other
nucleoporins can substitute for those deleted regions and im-
plies a redundancy of function among related components of
the nuclear pore complex. This is also consistent with the fact
that many nucleoporins are not themselves essential, again
implying a redundancy of function.

Several nucleoporins do not contain FG repeats but contain
other sequence motifs. These include the coiled-coil domains
found in Nsplp, Nup49p, Nup57p, Nic96p, CAN/NUP214, and
p62 (59, 97, 99, 143, 273); the leucine zipper found in Nup107
and CAN/NUP214 (143, 210); and the zinc finger domain
found in Nupl53 (252). In addition, several of the yeast
nucleoporins have sequences that are consistent with RNA
binding domains. These include Nupl00p (269), Nupllép
(269, 273), and Nup145p (267).

At least two screens carried out in yeast have identified other
FG-containing candidate nucleoporins or nucleoporin-associ-
ated proteins. A two-hybrid/interaction trap (74, 103) screen
carried out with the human immunodeficiency virus (HIV) Rev
protein identified yeast (251) and human (28, 84) Rev inter-
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acting proteins (Rips). These Rips contain FG repeats that are
diagnostic of nucleoporins. Yeast Riplp is concentrated at the
nuclear rim (251). A second screen carried out in S. cerevisiae
(31) identified a protein called Npl4p that is required for
nuclear membrane integrity and nuclear transport (61). Np1l4p
contains several FG repeat motifs and is localized to the nu-
clear periphery. In addition, overexpression of Np14p is able to
partially rescue the structural defects observed in nuclear pores
(268) when the NUPI116 gene is deleted.

One dilemma that arises with regard to components of the
nuclear pore is the question of what constitutes a nucleoporin.
Are nucleoporins structural components of the pore complex,
or are they also dynamic transport mediators that function
primarily at the pore? The current definition of a nucleoporin
is that it is localized to the nuclear pore. In many cases, pro-
teins are also designated nucleoporins if they contain FG re-
peat motifs. This raises the question whether importin-f, for
example, should be designated a nucleoporin. Importin- con-
tains several FG repeats, performs its function at the nuclear
rim, and spends at least a portion of its time at the nuclear rim
(95, 141, 209). Obviously, this point will not be resolved until a
model of the nuclear pore complex has been established.

Functional Analysis of Nucleoporins

Not only is budding yeast the system of choice for the iden-
tification of nucleoporins, but also there are significant advan-
tages to this organism for the subsequent analysis of nucleo-
porin function. The genes can be deleted to determine whether
they encode essential proteins, and the phenotypes of either
deletions or conditional alleles of the genes can be examined.
Results of these types of studies demonstrate that some
nucleoporins are essential for viability whereas others are not
(Table 1). Again, this probably reflects redundant functions of
some of the pore components, a hypothesis that is supported
by the fact that many mutations in genes encoding nucleopor-
ins display synthetic lethal interactions with conditional alleles
of other nucleoporin genes (66).

Since the nucleoporins are both the structural and functional
components of the nuclear pore complex, it seems likely that
many of them will serve general functions (perhaps those that
are primarily structural) and that some may play more specific
roles in the transport of different classes of macromolecules.
Functional analysis is complicated by the fact that nuclear
pores serve as the transit site for macromolecules both enter-
ing and exiting the nucleus. Since the transport process is
bidirectional, it is likely that an alteration that affects import
may also affect export either directly or indirectly and vice
versa. Thus, it is somewhat complicated to assign in vivo func-
tions to individual nucleoporins. Nevertheless, a number of
genes encoding nucleoporins have been identified in a screen
(9) for S. cerevisiae mutants defective in the export of poly(A)™
RNA from the nucleus. These nucleoporins were originally
referred to as RAT genes to designate RNA trafficking, but
they have now been renamed to follow the NUP convention.
They include NUPS85/RAT9 (89), NUPI20/RAT2 (110),
NUPI33/RAT3 (151), and NUP159/RAT7 (96). Furthermore,
the nucleoporins Nupl00p (269), Nupll6p (269, 273), and
Nup145p (267) contain putative RNA binding domains. Sub-
sequent experimentation has suggested that at least some of
these nucleoporins play a more direct role in the export of
poly(A)* RNA from the nucleus than in protein import. For
example, mutations in the essential gene NUP159 cause defects
in poly(A)™ RNA export, but no defect in protein import has
been detected (96).

Although genetic screens for mutants defective in nuclear
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protein import have not identified nucleoporins in the same
abundance as have screens for mutants defective in poly(A)™
RNA export, some nucleoporins are directly implicated in pro-
tein import. The nucleoporin that falls most readily into this
class is Nsplp. Several NSPI mutants have been characterized,
and thus far only protein import defects have been observed
(98, 186, 187). In vitro studies suggest that the protein import
defect observed in NSPI mutants arises from a decrease in the
docking of substrate to the nuclear envelope as well as from an
inability to translocate substrate across the pore (233). These
findings could explain why mutations in NSPI directly affect
protein import but do not seem to affect RNA export.

There is at least one case where different mutations in a
single nucleoporin delineate distinct roles for that protein in
both protein import and poly(A)* RNA export. Two different
alleles of the nucleoporin NUP49 have defects in one process
but not in the other. The nup49-313 allele causes defects in the
import of proteins to the nucleus (67, 233) but not in poly(A)™
RNA export. In vitro assays demonstrate that this NUP49
allele causes defects in docking proteins to the nuclear rim
(233). In contrast, the nup49-316 allele causes defects in
poly(A)* RNA export but not in protein import (67). These
findings suggest that Nup49p is essential for both protein im-
port to the nucleus and poly(A)™ RNA export.

Understanding precisely what role each nucleoporin plays in
macromolecular transport will probably require a model of the
entire pore complex, but the phenotypes of the different mu-
tants may contribute to our construction of an overall model.
One point to consider is that many of the relevant phenotypes
have not been examined for each nucleoporin, and in the case
of some essential genes, no conditional alleles are yet available.

A number of other in vivo defects have been attributed to
conditional mutations in different nucleoporin genes. Non-
transport phenotypes that have been reported include defects
in nuclear envelope and pore structure, clustering of nuclear
pores, and nucleolar fragmentation (6, 59, 67, 89, 188, 203,
223). The prevailing theory is that the pore-clustering pheno-
type results from a role for nucleoporins in anchoring the
nuclear pores within the membrane and possibly in forming a
matrix of nuclear pores embedded in the nuclear envelope,
analogous to a scaffold for the membrane (1). The nucleolar
fragmentation phenotype may result from a backlog in RNA
processing and transport, but this is a controversial issue that
has yet to be resolved. It has also been demonstrated that
tRNA processing is compromised in some nucleoporin mu-
tants but not in others (238, 244).

There are some limited approaches to assigning in vivo func-
tion to particular classes of nucleoporins in eukaryotes other
than budding yeast. For example, one method consists of de-
pletion of Xenopus egg extracts of nuclear pore components
with wheat germ agglutinin or antibodies prior to nuclear en-
velope assembly (75, 167, 190, 207). Such an approach has
been used to demonstrate that the vertebrate nucleoporin
complex p62-p58-p54 is required for docking of proteins at the
nuclear pore (75) and also to examine the steps in nuclear pore
assembly (157). These experiments are, however, restricted by
the availability of specific tools to deplete each nucleoporin.

Recently, the first mouse knockout of a nucleoporin gene
was described (260). This study demonstrated that the CAN/
NUP214 gene is essential for viability in mice. The results also
suggest that the CAN/NUP214 gene product is required for the
import of NLS-containing proteins to and the export of
poly(A)* RNA from the nucleus. No gross morphological de-
fects were observed in the nuclear envelopes or the nuclear
pores. This study provides the first genetic analysis of nucleo-
porin function in higher eukaryotes.
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TABLE 2. Vertebrate nucleoporins

Nucleoporin Motif or comment Localization Reference(s)
p54 Not cloned Central plug, nuclear and cytoplasmic rings 75, 199
pS8 Not cloned Central plug, nuclear and cytoplasmic rings 75, 199
po2 XFXFG; coiled coil Central plug, nuclear and cytoplasmic rings 75, 199
p75 Not cloned Cytoplasmic ring and filaments 199
NUP98 GLFG/FXFG/FG Nucleoplasmic face 212
NUP107 Leucine zipper 210
POM121 Integral membrane 105, 247
NUP153 Zn** fingers Nuclear basket 252
NUP155 Functional conservation with yeast Nup170p Nucleoplasmic and cytoplasmic faces 7, 136, 211
NUP180 Cytoplasmic ring and filaments 270
gp210 Glycoprotein Membrane protein 100, 275
CAN/NUP214/p250 XFXFG; coiled coil, leucine zipper Cytoplasmic rings and filaments 143, 199
p265/Tpr Cytoplasmic face 36
NUP358/RanBP2 Ran binding domain Cytoplasmic filaments 271, 277, 280

Interactions between Nucleoporins

Several of the nucleoporins can be grouped into substruc-
tures based on biochemical copurification of complexes and on
genetic interactions (summarized in Table 1). For example,
since conditional alleles of NSPI have been the basis for nu-
merous genetic studies, a number of nucleoporin genes that
interact with NSPI have been identified. These include NUPI,
NUP2, NUP49, NUP57, NUPS2, NUP84, NUPS5, NIC96,
NUP116, NUPI133, and NUP145 (66, 72, 97-99, 273). There are
several interpretations of the extensive genetic interactions
between nuclear pore components. It is possible that many of
these components physically interact with one another or that
they perform similar functions. It is also possible that a pore
complex can survive in the absence of one structural building
block but collapses when a second block is removed. Thus,
while the genetic studies have been most lucrative in terms of
the identification of nucleoporins and other transport compo-
nents, it is necessary to carry out the complementary biochem-
ical studies in order to begin to identify direct physical func-
tions for the different pore components. The biochemical
studies suggest that at least some of these genetic interactions
represent true physical association, because Nsplp can be pu-
rified in a complex with Nup49p, Nup57p, and Nic96p (97).
Further support for the existence of subcomplexes of nucleo-
porins comes from a second study in which a tagged version of
Nup84p was used to identify a complex of interacting proteins
including Nup120p, Nup85p, Sec13p, and a Secl13p homolog
(245). These experiments have begun to identify direct physical
interactions between pore components and thus to dissect the
nuclear pore into its distinct subcomplexes. These studies con-
firm that the convergence of genetic and biochemical data in
combination with increasingly detailed microscopic analysis
will ultimately result in the construction of a model of the
entire nuclear pore complex.

Vertebrate Nucleoporins

Several vertebrate nucleoporins have been identified by a
number of different approaches (Table 2). The studies on these
nucleoporins have been limited by the lack of genetic ap-
proaches available in higher eukaryotes. In some cases, the
vertebrate proteins appear to have yeast homologs, but the
connections are not always clear. For example, on the basis of
structural homology and cross-reactivity of antibodies, it has
been proposed that vertebrate p62 is the homolog of yeast
Nsplp (38). In contrast to the soluble transport factors, only in
a single case has sequence homology been tested to determine

whether it translates to conservation of function. This partic-
ular study demonstrated that the mammalian NUP155 gene
under the control of a constitutive promoter complements the
synthetic lethality of a nupl70Apom152A double mutant, sug-
gesting that mammalian Nup155 is functionally homologous to
yeast Nup170p (7, 136).

Although yeast may be the system of choice for identifying
individual components of the nuclear pore complex, the bal-
ance currently shifts to the study of higher eukaryotes for the
localization of individual nucleoporins within the three-dimen-
sional structure of the nuclear pore. Immunolocalization has
been used to demonstrate that a number of the known verte-
brate nucleoporins localize to the cytoplasmic filaments (Table
2). These nucleoporins include CAN/NUP214/p250 (199), Tpr/
p265 (36), and Nup358/RanBP2 (271, 280). In addition, p62
has been localized to both the internal and external faces of the
central plug (102) and NUP153 has been localized to the face
of the nuclear basket (252).

PROTEIN IMPORT

In recent years, the convergence of biochemical, genetic, and
cell biological approaches in the study of nuclear trafficking has
led to significant advances in our understanding of the mech-
anism of protein transport (92, 206, 254). Historically, nuclear
protein import has been described as a two-step process: an
energy-independent binding at the nuclear pore followed by an
energy-dependent translocation into the nucleus (191). Ad-
vances in our understanding of the import mechanism as well
as the identification of transport factors have led to the real-
ization that this process can actually be divided into more
distinct and specialized steps: (i) recognition of the transport
substrate in the cytoplasm, (ii) targeting to the nuclear pore
complex, (iii) translocation through the nuclear pore, (iv) re-
lease of the transport substrate at the nucleoplasmic face of the
pore complex, and (v) recycling of the transport factors. While
none of these steps are completely understood, some molecu-
lar detail (discussed below) is beginning to emerge.

Much of our insight into the mechanism of nuclear transport
has come from the realization that, like many other cellular
processes (29, 39), it depends on a cycle of GTP hydrolysis. In
the case of nuclear transport, this GTPase cycle is mediated by
the small GTP-binding protein Ran (133, 168, 176, 177). Other
essential factors are those that regulate the activity of Ran and
target transport substrates to the nuclear pore.
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TABLE 3. Protein import factors

Transport factor Function Localization References
Importin-a, SRPI, KAP60, NLS binding Cytoplasmic, nuclear, nuclear Rim 56, 94, 126, 146, 181, 249,
NBP70, karyopherin-a, p54/56, 257, 279

NPI-1, pendulin, oho31, PTAC
p54, Rehl

Importin-B, KAP95, RSLI,
karyopherin-§3, p97

Interacts with « to target
NLS-containing proteins
to the nuclear pore

GSP1&GSP2/Ran/spil (S. pombe) GTP hydrolysis

NTF2/p10/PP15 Binds to Ran-GDP and
nucleoporins with FG
repeats

RNAI1/RanGAP1/rnal (S. pombe) GTPase-activating protein
(GAP)

PRP20/RCCI1/piml (S. pombe),
BJ1 (Drosophila)
YRB1/RanBPI/spbl (S. pombe)

Nucleotide exchange factor

GTPase-activating protein
activator

Cytoplasmic nuclear im 42, 95, 141, 209

Nuclear, cytoplasmic
Nuclear rim

19, 133, 163, 165, 168, 177
51, 178, 185, 201

Cytoplasmic, nuclear rim 22,115, 117, 165

Nuclear 24, 57, 134, 230

Cytoplasmic, nuclear rim 23, 109, 195, 235

Recognition

Nuclear localization signals. Proteins destined to be tar-
geted into the nucleus following translation in the cytoplasm
contain specific signals in their primary sequences that dictate
that destiny (65). The most extensively studied signals are
termed nuclear localization signals (NLSs) and, unlike other
signal sequences, can be located anywhere in the primary se-
quence of the protein. No true consensus has emerged for
NLSs, although numerous signals that target proteins to the
nucleus have been identified. The canonical short NLS is the
7-amino-acid stretch from the simian virus 40 large T antigen,
PKKKRKYV (135). Mutation of the underlined amino acid
renders the sequence nonfunctional (135, 147). This short NLS
sequence has been joined by the bipartite NLS, which consists
of two runs of basic amino acids (similar to the simian virus 40
NLS) separated by a spacer region (65). The classic example of
this type of NLS is found in nucleoplasmin (221). Furthermore,
other longer, more complex sequences that target proteins to
the nucleus have been identified (246). Interestingly, at least
one of these complex signals, found in the heteronuclear RNA
binding protein hnRNPAI, is sufficient not only for targeting
into the nucleus but also for subsequent export out of the
nucleus (173).

The context of the NLS can influence the rate of transport to
the nucleus (189). In particular, it is possible to regulate trans-
port to the nucleus by modification of the amino acids flanking
the NLS. One example of this regulation is the reversible
phosphorylation of amino acid residues proximal to the NLS
(130, 220). This mechanism is used to modulate the localiza-
tion of transcription factors in response to a signal transduc-
tion cascade. In yeast, several transcription factors move into
the nucleus in a manner that is regulated by their phosphory-
lation state (130). For example, the Swi5p and Swi6p transcrip-
tion factors are cytoplasmic when phosphorylated on a specific
serine residue but move into the nucleus during the stage in the
cell cycle where they are dephosphorylated (174, 242).

NLS receptor. Proteins are targeted to the nuclear pore via
an interaction in the cytoplasm between the NLS within the
protein and a soluble NLS receptor. For a number of years, the
molecular identification of the NLS receptor eluded research-
ers. However, recent advances in research in yeast and higher
eukaryotes have led to the isolation of a heterodimeric com-

plex required for targeting NLS-containing proteins to nuclear
pores.

The first subunit of the NLS receptor was identified bio-
chemically by fractionation of Xenopus cytosol in conjunction
with an in vitro import assay. This subunit is a protein of
approximately 60 kDa termed importin-a (94). When the
cDNA corresponding to the protein was cloned and se-
quenced, it became apparent that the S. cerevisiae gene encod-
ing yeast importin-a had already been cloned. The protein had
been shown to be associated with nuclear pores (18, 278);
however, its specific function remained unknown. In fact, the
yeast gene was identified in a genetic screen for suppressors of
a temperature-sensitive allele of RNA polymerase I, resulting
in the designation of the gene as SRPI (suppressor of RNA
polymerase). Several other studies (with a variety of organ-
isms) have also identified this subunit of the NLS receptor (3,
126, 181, 194) (Table 3). The second subunit of the NLS
receptor is a protein of approximately 95 kDa termed impor-
tin-B. Like importin-a, this protein was identified by a number
of complementary approaches (42, 127, 141, 212). Since im-
portin-a and importin-B have been isolated by a number of
different groups, they have been given a number of different
names (Table 3). The yeast genes have been referred to most
frequently as KAP60 () and KAP95 (B), while the proteins
have been referred to as either karyopherin-a and karyo-
pherin-f or importin-a and importin-@.

While both subunits of the NLS receptor can interact with
NLS sequences, the binding to importin-a is significantly
tighter (95, 181). This finding, in combination with the obser-
vation that importin-f interacts with repeats contained in sev-
eral nucleoporins (127, 212, 216), has led to the proposal of a
model in which importin-« is primarily responsible for binding
to NLS-containing proteins and importin-8 then targets the
complex to the nuclear pore (95, 181). There is also genetic
data consistent with this model of NLS receptor function. Mu-
tations in genes encoding either subunit of the NLS receptor
cause defects in the import of NLS-containing proteins in vivo
(141, 154). Furthermore, the intracellular localization of the
two subunits is consistent with the model. Importin-§ is found
both in the cytoplasm and concentrated at nuclear pores on
either side of the nuclear envelope (18, 95, 141). Importin-o is
also found in these locations, but, in addition, a significant pool
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is found in the nucleus (95). In fact, in some mutant yeast
strains, importin-a actually accumulates in the nucleus under
conditions where export from the nucleus is blocked (6, 141).

Structure-function analysis of the yeast importin-a protein
has contributed to our understanding of the mechanism used
by the NLS receptor to target proteins to the nuclear pore.
Importin-a, as well as a number of other proteins, contains an
internal region with hydrophobic repeats sometimes referred
to as “armadillo” repeats (202, 279). This region can bind to
NLS-containing sequences (53, 265). The N terminus of im-
portin-a also contains a number of residues that are highly
conserved. Two recent studies have demonstrated that it is this
region that mediates binding to importin-3, an activity which is
sufficient to direct importin-a (or a heterologous protein) into
the nucleus (90, 265). It will be of interest to extend these
structure-function analyses to in vivo studies by carrying out
similar experiments with mutant proteins expressed in yeast.

Several other interesting observations have been made with
respect to the in vivo function and regulation of the importin-a
subunit. A mutant allele of the yeast importin-a gene, srpI-31,
causes defects in progression through the cell cycle in addition
to defects in nuclear import (154). Cells harboring this muta-
tion were arrested at the G,/M transition with a short bipolar
spindle. This finding is one of several that suggests intriguing
connections between nuclear transport and cell cycle progres-
sion (for reviews, see references 57 and 229). One observation
that may also be relevant to the in vivo function of importin-a
is the finding that the protein appears to be phosphorylated
(13, 250). It is possible that phosphorylation modulates the
interaction with the NLS-containing substrate.

Targeting to the Nuclear Pore

Very little is known about how the import complex is tar-
geted to the nuclear pore. It is thought that the cytoplasmic
filaments identified in higher eukaryotes may serve to concen-
trate the transport substrate at the face of the nuclear pore.
Recent high-resolution studies provide support for this hypoth-
esis (197).

The role of importin-B appears to be to direct the import
complex to the nuclear pore. The mechanism by which this
occurs is not yet understood in detail, but it is of interest that
the nucleoporin repeat domains, GLFG and FXFG, have been
shown to interact with importin-B (120, 156). In many cases
thus far, the repeats have been isolated and tested for inter-
actions outside the context of the entire protein either by in
vitro methods (127, 185, 216) or via the two-hybrid screen
(127). Thus, it remains to be determined which of the nucleo-
porins directly interacts with the transport factor-substrate
complex in vivo. Furthermore, at least one yeast nucleoporin,
Nup2p (64), and one mammalian nucleoporin, RanBP2/
Nup358 (277, 280), contain Ran binding domains (16, 107), a
motif found in proteins that interact with the small GTP-
binding protein required for nuclear transport, Ran (168, 177).

RanBP2 has been localized to the filaments that extend into
the cytoplasm, and it has therefore been proposed that this
nucleoporin serves as the initial docking site for the NLS-
receptor complex at the periphery of the nuclear envelope in
higher eukaryotes (271). One thing to consider with respect to
this model is that Nup2p, which is the yeast protein with the
greatest homology to RanBP2, is not essential for viability in S.
cerevisiae (153). It is notable that since the entire yeast genome
has been sequenced, there are no other candidates for yeast
homologs of RanBP2. This means that, at least in S. cerevisiae,
this docking step cannot represent an essential step in the
transport process. There are several possible explanations for
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this apparent paradox. First, Nup2p may not be a functional
homolog of RanBP2. This can be tested in yeast, where the
NUP?2 gene is essential in some genetic backgrounds. Second,
it is possible that transport occurs via a different mechanism in
yeast than in higher eukaryotes. It seems unlikely, given the
extreme conservation observed between transport factors in a
variety of species, that the mechanism of translocation of sub-
strates through the nuclear pore is really distinct in different
organisms. It is possible, however, that the initial docking step
and targeting to the nuclear pore differ. It is possible that
higher eukaryotes, which have a higher ratio of cytoplasmic
volume to nuclear volume than yeast cells, require a more
extended nuclear pore to lure NLS-containing proteins into
the nuclear transport machinery. This could explain why the
cytoplasmic filaments observed in higher eukaryotes have not
yet been identified in yeast (59). Finally, it is possible that
binding at RanBP2 represents one of many entrees into the
transport pathway. Some genetic experiments suggest that
NUP2 may represent one branch of an import pathway, be-
cause it is essential only when NUPI is deleted (153). However,
since it is not yet clear whether either of these nucleoporins is
involved in the initial docking at the pore or even where they
are localized in the pore, it would be premature to draw any
definite conclusions on the basis of this genetic data. Future
studies on the organization and complete structure of the nu-
clear pore complex will lend insight to the role of these critical
interactions in directing transport substrates to the site of
translocation.

Translocation into the Nucleus

Once transport substrates are targeted to the nuclear pore,
they must undergo translocation through the pore complex.
The most important breakthrough in the analysis of the trans-
location step of nuclear protein import came with the identi-
fication of the small GTP-binding protein Ran as a critical
cytosolic transport factor (168, 177). This discovery demon-
strated that nuclear transport is a cellular process that has
reiterated a regulatory mechanism used throughout the cell, a
cycle of GTP hydrolysis (29, 32, 39). It also provided a number
of paradigms on which to base future studies on the mecha-
nism of nuclear transport. As with many other cellular pro-
cesses, a number of factors that regulate Ran-mediated GTP
hydrolysis have been identified. In fact, the combination of
genetic and biochemical approaches has allowed the creation
of a list of factors involved in this process (Table 3). It has been
relatively straightforward to identify these transport factors
and to assign their roles on paper; however, it will be more
complicated to weave them into a model that explains all the
data that has been gathered thus far and allows the vectorial
transport of substrates both into and out of the nucleus (92,
140).

The GTP cycle. (i) Ran. Ran was initially identified as an
open reading frame with homology to small G-proteins like
Ras (69). Several years later, the protein was purified by a
mammalian in vitro protein import assay (179). It was identi-
fied as a cytosolic factor required for the import of NLS-
containing substrates into the nucleus (168, 177). Highly con-
served homologs of Ran have been identified in every
organism examined to date (55). In S. cerevisiae, there are two
nearly identical Ran homologs encoded by GSPI and GSP2
(19, 133). These genes were identified as high-copy suppressors
of the prp20-1 mutant (see the discussion of Prp20p, below).
GSPI is a highly expressed essential gene, whereas GSP2 is
upregulated only under certain growth conditions and is not
essential (19).
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Like other G-proteins, Ran cycles between a GDP-bound
form and a GTP-bound form (32). In vitro studies demon-
strated that nuclear protein import is inhibited by nonhydro-
lyzable analogs of GTP (168, 177). Several approaches were
taken to examine the in vivo effects of perturbing the Ran-
mediated GTP cycle. The original in vivo experiments were
carried out with S. cerevisiae (234), but some have since been
duplicated in other systems (37, 63, 165). Overexpression of
dominant negative Gsplp locked in either the GTP-bound or
the GDP-bound state is toxic to cells and causes defects in both
protein import and poly(A)" RNA export (141, 234). Recent
studies have demonstrated that similar phenotypes are ob-
served in the absence of a functional Gsplp (274).

Both genetic and biochemical studies have led to the iden-
tification of a number of proteins that interact with and regu-
late Ran (155, 178, 215, 219, 228, 235). Future studies will take
advantage of the availability of the crystal structure of Ran
(231) to study these interactions at the molecular level.

Since its discovery, Ran has been implicated in a number of
cellular processes (reviewed in references 12, 225, and 229). It
is not yet clear whether Ran plays multiple cellular roles or
whether its central function in nuclear transport leads to pleio-
tropic effects on other cellular events that occur downstream of
nuclear transport (46, 58, 142, 214). There is experimental
evidence to support either of these two views, so the contro-
versy is unlikely to be resolved in the immediate future.

(ii) Rnalp/RanGAP1. Like many other cellular G-proteins,
most notably Ras (29), the rate of GTP hydrolysis by isolated
Ran is negligible (21, 234). Thus, in vivo, a catalyst is required
to enhance the rate of this reaction. Proteins that enhance the
rate of GTP hydrolysis mediated by G-proteins are called
GTPase-activating proteins (GAPs) (104).

The GAP for Ran was originally identified in S. cerevisiae as
a mutant with pleiotropic defects in macromolecular biosyn-
thesis (108). Studies to further characterize the mutant iden-
tified RNA processing and transport defects and demonstrated
that the mutant accumulated precursors of tRNA and rRNA
(115, 124). Later work demonstrated that the mutant was also
defective in the export of poly(A)* RNA to the cytoplasm (9).
These studies suggested that the RNAI gene product played a
crucial role in many aspects of RNA processing. However,
when the gene was cloned (11) and the protein was localized,
the localization was found to be primarily cytoplasmic (117).
This presented a paradox because a protein involved in many
aspects of RNA maturation was expected to be present in the
nucleus.

Since the cellular defects attributed to mutant RNAI strains
were so pleiotropic, the possibility arose that this gene plays
some general role in the transport of macromolecules across
the nuclear envelope. To examine this possibility, nuclear pro-
tein import in an RNAI mutant (50), rnal-1, that had been
historically characterized as an RNA trafficking mutant (9, 115,
116, 124) was examined. Results indicated that the RNAI mu-
tant is defective in nuclear protein import as well as RNA
processing and transport. This finding also highlighted one of
the caveats of in vivo experimentation. Since nuclear transport
is a bidirectional process, it is likely that compromising the flow
of macromolecular traffic in one direction might also affect the
flow in the opposite direction. Thus, any mutation that blocks
protein import may also affect the export of RNA and vice
versa. This highlights the need for in vitro experimentation to
confirm the in vivo observations. In the case of the RNAI
mutant, in vitro assays were used to demonstrate that Rnalp
plays a direct role in protein import to the nucleus (50).

Concurrent with this study, the cellular Ran GAP was puri-
fied biochemically (21, 22). This provided the functional con-
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nection between the RNAI gene and the Ran GAP activity,
because the mammalian Ran GAP purified was found to be a
homolog of the S. cerevisiae Rnalp (15, 21, 22). The present
studies support a model in which the Ran GAP, Rnalp, is
absolutely required for protein import into the nucleus. It is
also possible that the Ran GAP plays a direct role in poly(A)™
RNA export (258), but this is a more difficult question to
address since in vitro assays for poly(A)™ RNA export have not
yet been developed.

A covalently modified form of the GAP exists in vivo in
higher eukaryotes. Two studies have demonstrated that Ran
GAP1 from mammalian cells is modified by a small ubiquitin-
like molecule (158, 164). Both these studies suggest that the
modification alters the interaction between the GAP and the
nuclear pore. This modified form of the GAP has also been
observed in Xenopus (228). While there is not yet any evidence
to suggest that the yeast GAP, Rnalp, is modified by a similar
ubiquitin-like molecule, the yeast genome does encode a small
protein with homology to the modifying moiety. This protein is
called Smt3p and was originally identified in a screen for sup-
pressors of a mutated component of the centromere, Mif2p
(171).

(iii) Prp20p/RCCI1. Another critical regulator of Ran func-
tion is the nucleus-localized (193) nucleotide exchange factor
for Ran (24). Exchange factors catalyze the release of GDP
from the GTP binding protein and consequently the regener-
ation of the GTP-bound form of the protein (208).

The exchange factor for Ran has been identified in vivo in a
number of different screens carried out in several different
systems including Chinese hamster ovary (CHO) cells (193),
Drosophila (82), fission yeast (163, 230), and budding yeast (45,
134, 261). The exchange factor gene was first cloned on the
basis of complementation of the temperature sensitivity of the
tsBN2 CHO cell line, which undergoes premature chromatin
condensation at the nonpermissive temperature (192, 193).
The gene was designated RCC1 for regulator of chromatin
condensation (57, 193).

In S. cerevisiae, the exchange factor was identified in two
different screens as a mutant, encoded by prp20-1 (81, 261) or
mitrl-1 (134), with pre-RNA processing and RNA trafficking
defects similar to those described for rnal-1 (8,9, 50, 115, 134,
141). The subsequent cloning of the PRP20 gene led to the
realization that Prp20p was homologous to RCC1 (4), and it
was later shown that the RCC1 gene could complement a
PRP20 mutant (80), demonstrating that the two proteins are
also functional homologs. Another screen in yeast identified a
third mutation in PRP20, termed srml-1 (45), a mutant that
restored mating to strains that had had the STE3 gene, which
encodes the pheromone receptor, deleted (248). No direct role
for Prp20p in the mating-type pathway has been identified, but
it is another cellular pathway that involves a cycle of GTP
hydrolysis (39, 114). Since some of the phenotypes attributed
to the PRP20 mutants are so similar to those described for
RNAI mutants, it is not surprising that subsequent experiments
demonstrated that cells lacking a functional Prp20p are also
defective in the import of NLS-containing proteins to the nu-
cleus (141, 255).

Although the RCC1 protein was identified as a nucleotide
exchange factor for Ran several years ago (24, 25), it was not
until the role for Ran in nuclear transport was realized (168,
177) that the in vivo phenotypes of various RCC1 (and PRP20)
mutants were considered in light of biochemical function.
Thus, it is not surprising that mutations in this gene cause
pleiotropic defects in nuclear transport, since it regulates the
Ran GTP cycle. While the direct contribution of the exchange
factor to either protein import or RNA export has been diffi-
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cult to address, current models suggest that the regeneration of
the GTP-bound form of Ran in the nucleus is required both for
the continuation of the protein import cycle and for the export
of poly(A)* RNA (140).

Like Ran, Prp20p and its homologs have been implicated in
many cellular processes that may or may not be linked directly
to nuclear transport (57). In fact, one possibility is that ex-
change factors like Prp20p actually do play more than one
nuclear role and that the pleiotropic effects attributed to Ran
are actually a result of alterations in the functions of these
proteins instead. One recent study that demonstrates that
Prp20p is a phosphoprotein in vivo (80) raises the question
whether the phosphorylation state of the protein is a point of
regulation of nuclear transport or whether it modulates some
other function.

(iv) NTF2. Another protein that has been implicated in
nuclear transport by both in vitro (178, 201) and in vivo (51)
experiments is the small Ran binding protein that has been
referred to as ppl5 (30), pl0 (178), and nuclear transport
factor 2 (NTF2) (201) in higher eukaryotes and Ntf2p (51) in
yeast. This protein was identified biochemically as an essential
cytoplasmic component of the transport system that interacted
both with Ran (178) and with the nuclear pore protein, p62
(201). The locus was also identified genetically in S. cerevisiae
as a conditional mutant defective in the import of proteins to
the nucleus (51). The function of this protein has been con-
served throughout evolution, its localization at the nuclear rim
is consistent with a role in nuclear transport, and it interacts
both with Ran and with components of the nuclear pore (51,
178, 200). In vivo studies have demonstrated that the gene is
essential for viability in S. cerevisiae (51, 185). Finally, yeast
strains harboring conditional alleles of NTF2 are defective in
protein import but not in poly(A)* RNA export. These results
suggest but do not prove that Ntf2p plays a more direct role in
protein import than in RNA export.

Studies of Ntf2p function have been facilitated by the solu-
tion of the crystal structure of the homodimeric protein (35,
137). These studies have provided insight into the physical
interaction between Ntf2p and Ran. Several lines of in vivo
evidence support the notion that the interaction between Ntf2p
and the GDP-bound form of Ran (185, 200) is critical to
nuclear transport. When wild-type Ntf2p is replaced with a
mutant Ntf2p that has altered interactions with Ran/Gsplp,
the resulting strains are inviable (49). Furthermore, condi-
tional gsp/ mutants are suppressed by the overexpression of
Ntf2p (274) but not by the overexpression of any other trans-
port factor. Biochemical experiments have demonstrated that
these mutant Gsplp proteins have a decreased affinity for
Ntf2p (274). One interpretation of this data is that when the
Ran/Gsplp-Ntf2p interaction is compromised, increasing the
cellular concentration of Ntf2p is sufficient to shift the equi-
librium toward formation of the complex. The complex itself
may be required for nuclear transport, or, alternatively, it is
possible that the interaction with Ntf2p physically stabilizes the
Ran mutant protein to make it competent for some critical
function.

Ntf2p also interacts tightly with some repeat-containing
nucleoporins (47, 118, 185, 200, 201). This interaction is con-
sistent with the subcellular localization of the protein, but its in
vivo consequence is not yet understood. Currently, it is possible
to construct a number of models for the role of Ntf2p in
nuclear transport. Since it interacts most tightly with the GDP-
bound form of Ran (185, 200), it seems likely that it may act as
a timing mechanism for the recycling of the protein to the
GTP-bound form by the exchange factor. Consistent with this
possibility, our attempts to identify any interactions between
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Prp20p, the exchange factor, and Ntf2p have been unsuccessful
(52), even though both proteins interact strongly with the
GDP-bound form of Ran. If the recycling reaction requires
targeting to the nuclear pore, this might provide logic for the
interaction between Ntf2p and the nuclear pore components.
A combination of biochemical and genetic approaches will be
necessary to refine this model or to develop new models for
Ntf2p function.

(v) Yrblp/RanBP1. A protein that was identified on the basis
of its tight interaction with the GTP-bound form of Ran is
required to modulate Ran-mediated GTP hydrolysis (23, 54,
235). This protein is encoded in S. cerevisiae by the essential
gene YRBI (195, 235). Yrblp and its mammalian homolog,
RanBP1, fall into a class of proteins that contain a motif
referred to as a Ran binding domain (16, 107). Yeast strains
harboring conditional alleles of YRBI are defective both in the
import of proteins to the nucleus and in the export of poly(A)*
RNA (235).

The mechanistic role of Yrblp/RanBP1 in vivo is not yet
clear. Biochemical experiments demonstrate that the protein
can function as a GAP activating protein (25, 235). Thus,
addition of Yrblp/RanBP1 to GAP assays enhances the rate of
GAP-stimulated Ran-mediated GTP hydrolysis. This observa-
tion is consistent with the subcellular localization of the pro-
tein to the cytoplasm and the exterior of the nuclear envelope
(235), which in yeast is indistinguishable from the localization
of the GAP, Rnalp (117, 141, 258). However, in addition to
displaying GAP-activating activity, RanBP1 has been shown to
stabilize a trimeric complex between RanBP1, importin-3, and
Ran (41, 156). Other experiments have demonstrated that a
cytoplasmic retention signal in the C-terminal portion of
RanBP1 is required for its cytoplasmic localization (218). This
latter result is a bit puzzling, as the yeast protein is truncated
relative to the human protein and consequently does not con-
tain this domain. Further experimentation is clearly required
to reach a complete understanding of the in vivo function of
Yrblp/RanBP1.

Candidate transport factors. (i) Proteins that contain Ran
binding domains. As already discussed, several proteins that
contain a motif referred to as a Ran binding domain have been
identified (16, 107). These include the GAP-activating protein
Yrblp/RanBP1, which interacts tightly with Ran-GTP, as well
as the yeast nucleoporin Nup2p (64, 153) and the mammalian
nucleoporin RanBP2/Nup358 (277, 280), both of which inter-
act with Ran.

In both budding yeast and fission yeast, another protein
containing a Ran binding domain has been identified. The S.
cerevisiae protein was identified on the basis of sequence ho-
mology. The gene encodes a 36-kDa protein that has been
referred to as Nup36p (185), although it seems to be localized
throughout the nucleus (256) rather than exclusively at the
nuclear pore. The protein is not essential for viability and does
not interact tightly with Ran (256). A similar protein was iden-
tified in fission yeast in a screen for mutants resistant to the
Golgi poison, brefeldin A (85). This protein, termed hbal, is
essential for viability, is localized to the nucleus, and is phos-
phorylated in vivo (259). Further experimentation will be re-
quired to determine whether these proteins play a role in
nuclear transport or whether they interact with GTP binding
proteins involved in other cellular processes.

(ii) Other GTPases. There has been some evidence to sup-
port a role for a second, as yet unidentified G-protein in nu-
clear transport (237, 253). In one study, an altered-specificity
Ran mutant was used to make this argument (253). However,
other researchers, using the same Ran mutant, reached the
conclusion that the nucleotide requirement in import was ful-
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filled by Ran-mediated hydrolysis of GTP alone (93, 264).
Another putative GTPase that interacts genetically with some
of the regulators of Ran is Gtrlp. This gene was identified as
a suppressor of mutations in PRP20 (184).

(iii) HSP70. As with many other cellular transport processes,
some studies have implicated the chaperone Hsp70p in nuclear
protein import (125, 239). Recent work has demonstrated that
elevated expression of one of the HSP70 genes in S. cerevisiae,
SSAI, is sufficient to suppress the temperature-sensitive phe-
notype of two nuclear transport mutants (240). These results
suggest that Hsp70p may facilitate some steps in the nuclear
transport process.

Mechanism of translocation. While it is straightforward to
list the potential players in translocation, it is much more
difficult to propose a model for the actual movement of import
substrates through the nuclear pore, a distance of approxi-
mately 200 to 300 A (198). When considering the task that
must be accomplished, at least two general mechanisms seem
feasible. In one mechanism, the movement through the pore
would occur by random nondirected diffusion, but upon reach-
ing some point, an irreversible gate would open and close,
committing the substrate to enter the nucleus (detailed in
references 92 and 140). The second model would involve a
series of associations and dissociations of the substrate with the
transport channel as the substrate moved down an energy
gradient in a directed stepwise manner (detailed in reference
216). The second model might require repeated rounds of
GTP hydrolysis for the repetitive association and dissociation
steps. These two models have recently been compared (140).

Release into the Nucleus

Once transport into the nucleus is accomplished, it is essen-
tial that the importin-NLS-containing complex dissociate to
deliver the substrate to its destination. Since it is not yet pos-
sible to distinguish between the two general mechanisms for
translocation, the role played by release into the nucleus in
nuclear protein import is unclear. The mechanism of translo-
cation of the substrate mentioned above directly affects the
contribution of this step to completing transport into the nu-
cleus. If translocation occurs via directed steps down an energy
gradient, it is possible that release into the nucleus simply
occurs when the final step is reached and no further association
points exist. In contrast, if transport occurs by random diffu-
sion, release could rely heavily on a release step that would
commit the substrate to be released into the nucleus.

Regardless of the mechanism of translocation, current think-
ing would require that the two importin subunits dissociate
from one another at the nucleoplasmic face of the pore, since
importin-a and the transport substrate can be released into the
nucleus but importin-B remains associated with the pore (95,
181). One study has demonstrated that when importin-8 binds
to Ran-GTP, importin-a dissociates from importin-f and re-
leases the importin-a—NLS-containing protein complex into
the nucleus (92, 93). Since Ran-GTP is generated in the nu-
cleus by the nucleus-localized exchange factor, this would be a
mechanism for ensuring that release does not occur until the
substrate has reached its destination.

Recycling of the Transport Factors

One transport step that is rarely considered is the require-
ment for recycling of the transport factors. At least some of the
transport factors actually move through the pore in association
with the transport substrate. These factors would include im-
portin-a, which is actually released into the nucleus in concert
with the transport substrate (95, 181); importin-B, which seems
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to remain associated with the pore complex (95); and probably
Ran (169). For the flow of substrates into the nucleus to con-
tinue, these components require recycling from the nucleus to
the cytoplasm. In addition, to maintain the GTPase cycle, the
necessary nucleotide-bound state of the G-protein must con-
tinually be regenerated.

The way to examine the recycling of transport components is
to use an in vivo system that undergoes multiple rounds of
transport. For example, the recycling of importin-a in several
yeast mutants with defects in nuclear transport has been ex-
amined. When the nucleoporin NUPI20 is deleted, importin-a
accumulates in the nucleus (6). A similar phenotype is ob-
served when Ran-GDP accumulates in the cell either due to a
mutation in the exchange factor or due to overexpression of
Ran locked in the GDP-bound form (141). These results sug-
gest that importin-a is indeed recycled through the nuclear
pore complex and that it probably requires regeneration of
Ran-GTP for this recycling. The localization of importin-a has
not been examined in many nucleoporin mutants, and so it
remains to be seen whether Nup120p plays a specific role in
transit back to the cytoplasm or whether other nucleoporin
mutants display a similar phenotype.

Recent evidence has suggested that much of the recycling of
transport factors occurs in conjunction with a pathway for
export of macromolecules from the nucleus (see the section on
U snRNAs, below). It is not yet clear whether the export of the
factors, for example importin-a (91), is required to mediate the
export of macromolecules or whether these transport compo-
nents simply hitch a ride on the export substrates as a means of
recycling. It certainly seems likely that the regeneration of
Ran-GTP may be essential for the export of at least some
macromolecules from the nucleus (180, 234). Thus, the replen-
ishing of the pools of import-competent transport factors is
inexorably linked to the achievement of vectorial transport of
substrates.

Models for Protein Import

Vectorial transport. The question of how vectorial transport
is accomplished is critical to our overall understanding of nu-
clear protein import. One major question that exists with re-
gard to the Ran-mediated cycle of GTP hydrolysis is how
transport and GTP hydrolysis are coordinated. It is now clear
that GTP is the only nucleotide required for import of proteins
to the nucleus (93, 264). There is no apparent requirement for
ATP. However, it is not yet clear precisely when the hydrolysis
is required or how many rounds of hydrolysis are required for
import of a substrate. For the transport system to be efficient,
once proteins are imported to the nucleus, they should remain
there unless they are specifically targeted for export. As men-
tioned above, this must be accomplished in a manner that
allows for continuous recycling of the G-protein and possibly
the transport factors without continuous cycling of the trans-
port substrates.

The subcellular localizations of the GAP and the exchange
factor present one possible mechanism for achieving vectorial
transport of substrates and recycling of the G-protein. The
GAP, Rnalp/RanGAP1, is localized in the cytoplasm, whereas
the exchange factor, Prp20p/RCCI1, is found in the nucleus.
This suggests a simple model in which GTP hydrolysis to gen-
erate Ran-GDP is required for import and perhaps regenera-
tion of the GTP-bound form of Ran is required for export
(140). Since we do not yet understand the specific require-
ments for Ran, particularly why the GDP-bound form is re-
quired for import, this model requires further refinement. In
addition, other observations need to be considered. Although
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FIG. 1. Models for nuclear protein import. The top model depicts the import
of a protein containing a canonical NLS. The bottom model depicts the import
of a class of proteins that do not contain a canonical NLS, hnRNPs. It is most
likely that translocation of both classes of proteins into the nucleus depends on
Ran and proteins that regulate its GTP hydrolysis activity (Rnalp, Yrblp, Ntf2p,
and Prp20p), because mutations in any of the genes cause mislocalization of
proteins in either class to the cytoplasm. In contrast, the mechanism of targeting
to the nuclear pore appears to be distinct for the two different classes of proteins.
Proteins that contain a canonical NLS are targeted to the nuclear pore via an
interaction in the cytoplasm with the heterodimeric NLS receptor composed of
importin-a and importin-B. In contrast, hnRNPs appear to be targeted to the
nuclear rim via an interaction with a distinct importin-B homolog (B'). Details of
both mechanisms are given in the text.

the GAP is localized primarily on the cytoplasmic face of the
nucleus (117, 141), recent work suggests that it may be able to
enter the nucleus (258). Furthermore, although Prp20p has
been identified as the yeast homolog of the Ran exchange
factor, RCCl, at least two other RCC1 homologs are encoded
by the yeast genome (138, 162). It remains to be determined
whether these proteins function in nuclear transport or
whether they serve as exchange factors for other unrelated
G-proteins. Finally, the other transport factors that interact
with Ran in a nucleotide-specific manner may contribute to
vectorial transport.

NLS-containing proteins. Several recent reviews have pre-
sented detailed models for the transport process (92, 140). A
simplified model is shown in Fig. 1. NLS-containing proteins
interact with the importin-a—importin-B heterodimer in the
cytoplasm via direct binding to importin-a. Importin-g then
targets the complex to the nuclear pore periphery, where it
interacts with repeat-containing nucleoporins. Current think-
ing dictates that Ran must be in the GDP-bound state to
promote import of this complex to the nucleus. Thus, both the
GAP (Rnalp) and the GAP-activating protein (Yrblp) are
required to stimulate GTP hydrolysis prior to import. Once
Ran-GDP is generated, the importin-NLS-bearing protein
complex is translocated into the nucleus through the nuclear
pore. It is unclear precisely what role Ran-GDP plays in this
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translocation. It seems likely that Ran moves into the nucleus
(169) in conjunction with the complex, but there is no evidence
that it is actually a component of the importin transport com-
plex. Dissociation of the transport complex occurs when the
importin complex interacts with Ran in the GTP-bound state
(93), which is generated in the nucleus by the exchange factor,
Prp20p. It is possible that the small protein Ntf2p plays some
role in timing the generation of Ran-GTP, but there is cur-
rently no direct evidence to support this hypothesis. At this
juncture, importin-a and the NLS-bearing protein are released
into the nucleus and importin-f is recycled to the cytoplasm. It
is not yet clear exactly where in the nuclear pore this event
occurs, but importin-B has been localized to both the cytoplas-
mic and the nucleoplasmic faces of the nuclear pore (95). Since
the steady-state distribution of importin-f is predominantly
cytoplasmic and it has not yet been observed to accumulate in
the nucleus, it seems that there must be an efficient directional
method for returning importin-f3 to the cytoplasm; however,
nothing is known about the details of this process. Importin-a
must also be recycled to the cytoplasm, and evidence is mount-
ing that this may occur in conjunction with some components
of the RNA transport machinery (91).

Other transport pathways. The transport mechanism pre-
sented above describes the import of NLS-containing proteins
to the nucleus. It has, however, been known for some time that
there are proteins that do not contain canonical NLSs but are
nonetheless efficiently targeted to the nucleus. It is not surpris-
ing that these proteins are translocated through the nuclear
pore in a manner that is Ran dependent but NLS receptor
independent (Fig. 1). For example, the yeast heterogeneous
RNA binding protein (hnRNP), Npl3p, is an RNA binding
protein that shuttles rapidly between the cytoplasm and the
nucleus (31, 79, 272). It undergoes rapid cycles of import to
and export from the nucleus, yet it does not contain a classical
NLS (31). In mutants where Ran-mediated GTP hydrolysis is
affected, Npl3p accumulates in the cytoplasm, as do proteins
containing standard NLSs (50, 51, 141, 274). In contrast, the
localization of Npl3p is unaffected by mutations in either NLS
receptor subunit that do affect standard NLS-containing pro-
teins (139).

Homology searches of the yeast genome revealed that there
are three importin-g homologs that share approximately 50%
sequence similarity with the NLS receptor subunit. One of
these genes was previously identified as a multicopy enhancer
of protein secretion, PSE! (44). The other two genes were
uncharacterized open reading frames that have now been
termed KAPI104 and KAPI123 (4).

Genetic analysis of PSE] and KAPI23 suggests that the
proteins they encode may function in the export of mRNA
from the nucleus (236). Both of these proteins are localized
primarily to the nucleus, and yeast strains with mutations in
both PSEI and KAPI23 accumulate poly(A)" RNA in the
nucleus.

Recently, direct evidence that supports a role for Kap104p in
the transport of some RNA binding proteins has been pre-
sented (5, 205). Yeast Kap104p binds directly to two RNA
binding proteins termed Nab2p (10) and Hrp1p (Nab4p) (111).
Mutations in the KAPI104 gene cause these two proteins, both
of which are normally localized primarily to the nucleus (10,
111), to become mislocalized to the cytoplasm (5). A second
study has demonstrated that the nuclear localization of the
human protein hnRNPA1, which is homologous to Hrp1p (68),
is dependent on a human homolog of Kap104p termed trans-
portin (205). These findings suggest that the different impor-
tin-pB proteins identified in yeast may function in distinct nu-
clear transport pathways and also imply that import to the
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nucleus can occur via pathways that are independent of clas-
sical NLSs (Fig. 1).

NUCLEAR EXPORT

Macromolecules exported from the nucleus include proteins
and a number of different species of RNA (78, 87, 129). Clas-
sical studies of nuclear export have focused on the movement
of different species of RNA out of the nucleus. The primary
approach to studying RNA export in vivo has been to use in
situ hybridization to examine the localization of poly(A)*
RNA in yeast and to search for conditional yeast mutants with
aberrant accumulation of poly(A)" RNA (9, 34, 134). This
approach, as well as subsequent genetic screens, has identified
components of the general nuclear transport process including
nucleoporins (89, 96, 110, 151), regulators of Ran-mediated
GTP hydrolysis (134), and other factors that may play specific
roles in RNA export (34, 62, 132, 183). A complementary
experimental approach has involved microinjection of RNA
into Xenopus oocytes. This method has been useful in eluci-
dating the different pathways used for export of different
RNAs (91). Microinjection studies suggest that different RNAs
are exported from the nucleus by independent, saturable path-
ways (131). These experiments led to the search for export
factors that would associate with RNAs and mediate export in
a class-specific manner. In fact, a number of recent reviews
have focused on the export of macromolecules from the nu-
cleus (78, 87, 129, 150, 175). Thus, this review will only touch
upon a few of the most recent findings.

Nuclear Export Signals

Only recently has it been determined that like protein im-
port to the nucleus, protein export from the nucleus is a spe-
cific signal-directed event. This realization has come with the
identification of specific nuclear export signals (NESs) in the
primary amino acid sequence of proteins that are specifically
targeted for export from the nucleus (87, 175). Thus far, two
different types of NESs have been identified. The first type is a
general export signal that has been identified in a variety of
proteins, including, thus far, HIV Rev protein (76), the human
T-cell leukemia virus type 1 Rex protein (27), protein kinase A
inhibitor (266), amphibian transcription factor IITA (83), and
the RNA export mediator, Glelp/Rsslp (62, 183). It is an
approximately 10-amino-acid sequence that is rich in hydro-
phobic residues, particularly leucine (reviewed in reference
175). The second type is a 38-amino-acid sequence, identified
in the C terminus of mammalian hnRNPA1, that serves as a
combined signal for both import and export (173, 246). This
sequence shares no homology with the leucine-rich NES. The
identification of these signals for export from the nucleus has
facilitated the search for proteins that may participate in pro-
cesses, such as RNA trafficking, that may require cycling of
factors between the nucleus and the cytoplasm.

RNA Export

The export of RNA from the nucleus is linked to all the
processing events that must occur prior to its exit from the
nucleus via the nuclear pores (119). A comprehensive review
of RNA processing is beyond the scope of this article, but it
should be noted that splicing, 3’ polyadenylation, and 5" cap-
ping all affect the export process (71, 106, 148, 159). For more
information, the reader is referred to recent articles on RNA
splicing (145, 226), polyadenylation (161), and 5’ capping
(241).

Several findings led to the conclusion that the substrate for
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FIG. 2. Models for RNA export. Models for the export of several different
classes of RNA are shown. The top model depicts the export of poly(A)* RNA
from the nucleus, a process that appears to be dependent on hnRNPs that shuttle
between the cytoplasm and the nucleus (149). The middle model simply identifies
the proteins, Rev and Rip, that have been identified thus far that may play a role
in the export of viral RNA from the nucleus. The bottom model shows the export
of U snRNA from the nucleus (91). Gorlich et al. have demonstrated that the
CBC, which binds to the cap of U snRNA, interacts with importin-a. They have
also demonstrated that this complex is dissociated upon interaction with impor-
tin-B. Details of all models are discussed in the text.

RNA export is not the nucleic acid itself but, rather, the asso-
ciated proteins found in the RNP complex (129). The most
notable piece of evidence to support this conclusion is the
observation that RNA can be observed moving through the
nuclear pore in conjunction with RNA binding proteins (262,
263). This realization led to the reclassification of RNA export
as a specialized form of protein export in which the signal for
export is found in the associated protein rather than in the
RNA itself. Thus, to understand the export of different RNA
classes from the nucleus, it is necessary to fully understand
protein export and to identify the specificity factors required
for each RNA class. Another important question is whether
the translocation machinery that is required for movement
across the nuclear envelope is the same for all transport sub-
strates. There is evidence that, like protein import, protein
export from the nucleus requires Ran-mediated GTP hydroly-
sis (180). In addition, export of poly(A)" RNA from the nu-
cleus is compromised in yeast strains with mutations in genes
that affect Ran-mediated GTP hydrolysis (9, 134, 234, 235,
274).

It may be necessary to consider different mechanisms of
transport for different species of RNAs (summarized in Fig. 2)
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and perhaps even for RNAs that fall into the same class. One
recent study demonstrated that there is a pathway for the
export of heat shock mRNA that is distinct from the standard
poly(A)™ export pathway (227). This export pathway may be
related to the export mechanism that is exploited by viruses to
hijack the host pathways for their own propagation (76).

Candidate Poly(A)* RNA Export Mediators

hnRNPs. For some time, interest had been growing in a class
of proteins termed heterogeneous nuclear RNPs (hnRNPs).
hnRNPs are abundant proteins that associate with poly(A)*
RNA in both the nucleus and the cytoplasm (68, 204). In
addition, both a yeast hnRNP, Npl3p, and mammalian
hnRNPs, hnRNPA1 and hnRNPB, have been shown to shuttle
rapidly between the cytoplasm and the nucleus (79, 204). These
features make certain hnRNP proteins prime candidates for
the role of RNA export mediator. Subsequent experiments
that examined both poly(A)* RNA export and Npl3p export in
budding yeast have added support to the hypothesis that such
proteins may act as carriers for the export of poly(A)™ RNA
from the nucleus. Mutations in the RNA recognition motif of
Npl3p block both RNA export and Npl3p export from the
nucleus, suggesting that the two exit in concert (149).

Implicit in the model that hnRNPs are mediators of RNA
export is the necessity that these proteins must release their
RNA “cargo” once the appropriate cellular compartment is
reached. Therefore, it seems likely that a mechanism exists to
regulate the association and dissociation of the hnRNPs with
RNA. One possibility is that some of these functions are reg-
ulated by posttranslational modifications. Several hnRNP pro-
teins undergo a novel methylation on arginine residues (86,
113, 243). This modification may contribute to the formation of
the appropriate export-competent RNP complex. Since a num-
ber of proteins that associate with nucleic acids contain poten-
tial sites for methylation, it seems likely that methylation will
serve as a general mechanism for regulating the formation of
protein-nucleic acid complexes (152). This hypothesis is fur-
ther supported by the identification of conserved genes encod-
ing arginine methyltransferases in yeast (113) and in higher
eukaryotes (2, 112).

Rev proteins and cofactors. Cellular hnRNPs are not the
only candidates for mediators of poly(A)" RNA export. The
HIV-1 Rev protein has many of the same characteristics as the
hnRNP proteins described above. Rev shuttles between the
cytoplasm and the nucleus (172, 217) and promotes the export
of unspliced poly(A)" RNA via the Rev response element (77,
160). In addition, Rev contains a leucine-rich NES that directs
its export from the nucleus (76). Several recent studies have set
out to identify proteins that interact with Rev along its export
pathway in an attempt to identify cellular components of the
poly(A)* RNA transport machinery. These studies have iden-
tified a cellular cofactor that is present in both yeast (251) and
human (28, 84) cells. These proteins have been called Rips
(Rev-interacting proteins). These Rips have homology to
nucleoporins (as mentioned in “Components of the nuclear
pore complex” above) and thus may play a role in targeting the
RNA carrier to the nuclear rim.

A recent study has in fact identified a protein that may be
the cellular equivalent of Rev. This protein, Gle1p/Rss1p, was
identified in two different screens carried out in S. cerevisiae.
One screen identified mutants that were synthetically lethal
with mutations in the GLFG-containing nucleoporin NUPI100,
GLE] (GLFG lethal) (183). The second screen identified high-
copy suppressors of yeast strains harboring a mutation in the
NUPI59/RAT7 gene, RSSI (rat7-1 suppressor) (62). Glelp/
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Rsslp is an NES-containing protein that interacts with a num-
ber of nucleoporins including yeast Rip1p. Its interaction with
Riplp appears to be mediated by the NES, because point
mutations that inactivate the NES also abolish the interaction
with Riplp. Consistent with Glelp/Rsslp acting as a cellular
counterpart of Rev, mutations in this essential gene cause a
rapid-onset defect in the export of poly(A)" RNA from the
nucleus (183). Thus, by studying the pathways available for the
export of viral poly(A)™ RNA, it may be possible to learn more
about the export of cellular poly(A)* RNA. The identification
of the GLEI/RSS1 gene now creates a starting point for new
genetic screens that should identify yet more components of
this cellular machinery.

A second Rev-interacting protein that may function in some
aspect of RNA processing and transport is the eukaryotic ini-
tiation factor SA (eIF-5A) (224). Mutant alleles of the eIF-5A
gene were identified in yeast in a screen for conditional mu-
tants that mislocalized nuclear proteins (31, 43).

Another protein that is a potential mediator of poly(A)™
RNA export was identified in a screen for S. pombe mutants
which accumulate nuclear poly(A)™ RNA (34). This protein,
rael, is essential for viability in fission yeast and is localized at
the nuclear periphery. The S. cerevisiae homolog of rael,
Gle2p, was identified in a screen for mutants synthetically
lethal in combination with mutations in NUPI00 (182), the
same screen in which Glelp (see above) was identified (183).
The GLE?2 gene is not essential for viability, but mutants have
defects in the export of poly(A)" RNA from the nucleus.
Gle2p/rael has no homology to hnRNPs or to other proteins
that have been implicated in RNA trafficking.

Export of Other RNAs

U snRNAs. Although most studies carried out in yeast have
focused on the export of poly(A)" RNA due to its ease of
detection, biochemical studies have identified at least some of
the factors involved in the export of another class of RNA, U
snRNA (91). One of these factors is a subunit of the NLS
receptor, importin-a. This demonstrates the efficiency of the
cell. Since importin-a is cotransported into the nucleus with
NLS-containing substrates, it must necessarily be recycled to
the cytoplasm for another round of transport. Thus, the cell
takes advantage of this import-export cycle in both directions.
The study by Gorlich et al. (91) describes a biochemical ap-
proach to the identification of cellular proteins that are com-
plexed with yeast importin-a in vivo. The authors identify a
complex containing yeast importin-o and the yeast homologs
of the two subunits of the nuclear cap binding complex (CBC)
(48, 91). The cap binding complex consists of two subunits
encoded by CBP20 and CBPS80 (also known as GCR3 in yeast),
which have previously been shown to mediate the export of U
snRNA (128). This study also demonstrates that the addition
of yeast importin-f to the importin-a—CBC complex results in
the dissociation of the capped RNA from the complex. Since
importin-f is found predominantly in the cytoplasm, this sug-
gests a model in which the substrate is delivered to the appro-
priate cellular compartment as the result of an importin-B-
induced substrate-carrier dissociation.

Thus, in a single round of transport (Fig. 2), the U snRNA
would associate with a complex containing the cap binding
proteins, Cbp20p and Cbp80p, as well as importin-a in the
nucleus. This complex would then be translocated to the cyto-
plasm, where interaction with importin-8 would dissociate the
complex and deliver the substrate to the cytoplasm. The im-
portin-a would then be available for another round of nuclear
protein import. Presumably the cap binding proteins would
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need to be recycled to the nucleus for subsequent rounds of
RNA export.

tRNA. Finally, there is at least one class of RNA, tRNA, that
seems to be exported from the nucleus in a manner that is
fundamentally different from that for the other export sub-
strates. tRNA is able to exit the nucleus in the absence of a
functional exchange factor (when RCCI is lost), when export
of other species of RNA is blocked (40). This finding suggests
that tRNA exits the nucleus in a manner that is not dependent
on the Ran GTPase cycle. One possibility is that tRNA is small
enough to diffuse out of the nucleus. However, classical studies
suggest that this is not the case, since mutant tRNAs are
retained in the nucleus (281, 282). Other transport events that
have been reported to occur in the absence of Ran-mediated
GTP include the import of U1l snRNP to the nucleus (63) and
the export of SSA44 poly(A)* RNA following heat shock (227).
It remains to be seen whether these non-Ran-dependent trans-
port events are mediated by another G-protein or whether they
occur via a completely different mechanism.

The identification of some of the basic components of the
RNA transport apparatus now opens the door to numerous
genetic studies that should lead to the rapid identification of
other genes involved in the process. Studies in yeast have
already paved the way for the identification of these factors;
therefore, it is logical to believe that ongoing studies will pro-
vide a wealth of new information in the coming years.

CONCLUSIONS

It is clear that we are beginning to understand nuclear trans-
port at the mechanistic level. Many of the components of
protein import have been identified, although some of their
roles are still not fully understood. Export from the nucleus is
by nature more complicated than import, as the variety of
vehicles that must travel this road may be more diverse than
those that take the import highway. However, it is clear that
studies that take advantage of all possible scientific methods
are beginning to unravel this complex mechanism as well. It is
likely that the amount of attention that is currently focused on
delineating export mechanisms will result in a rapid expansion
of our understanding, as has been the case for protein import
over the last 3 years.

With the recent advances in our understanding of nuclear
transport, it is intriguing to realize that several of these critical
components were actually originally identified, at least one as
long as 20 years ago, in genetic screens for budding yeast
mutants with defects in nuclear function (19, 108, 261, 278).
While these loci were identified many years ago, the subse-
quent biochemical analysis was necessary to understand their
function. This simply emphasizes the fact that it is the combi-
nation of all scientific venues that will eventually lead to the
complete understanding of the function of the various trans-
port factors in macromolecular trafficking across the nuclear
envelope as well as all other complex cellular processes.
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